Multiattribute Decision-Making: Use of Three Scoring Methods to Compare the Performance of Imaging Techniques for Breast Cancer Detection
نویسنده
چکیده
Multiple Attribute Decision Making (MADM) involves "making preference decisions (such as evaluation, prioritization, selection) over the available alternatives that are characterized by multiple, usually conflicting, attributes". The problems of MADM are diverse, and can be found in virtually any topic. In this paper, we use three different scoring methods for evaluating the performance of different imaging techniques used to detect cancers in the female breast. The need for such a decision support system arises from the fact that each of the several techniques which helps diagnose breast cancer today, has its own specific characteristics, advantages and drawbacks. These characteristics or attributes are generally conflicting. The goal is to detect as many malignant lesions in the breast as is possible, while identifying the maximum number of benign lesions. The four imaging techniques that are compared here are Magnetic Resonance Imaging (MRI), Mammography, Ultrasonography, and Nuclear Medicine. The three different multiattribute scoring methods are the Simple Additive Weighting method (SAW), the Weighted Product Method (WPM), and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The three methods are described in detail, and then used to rank the four imaging techniques. The results are analyzed and the validity and robustness of the methods are tested using post-evaluation analysis. Disciplines Oncology Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-00-10. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/119
منابع مشابه
A New Method for Detection of Backscattered Signals from Breast Cancer Tumors: Hypothesis Testing Using an Adaptive Entropy-Based Decision Function
Introduction In recent years methods based on radio frequency waves have been used for detecting breast cancer. Using theses waves leads to better results in early detection of breast cancer comparing with conventional mammography which has been used during several years. Materials and Methods In this paper, a new method is introduced for detection of backscattered signals which are received by...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کاملA review of neural network detection methods for breast cancer: review article
Breast cancer is the most common cancer among women and the earlier it is diagnosed, the easier it is to treat. The most common way to diagnose breast cancer is mammography. Mammography is a simple chest x-ray and a tool for early detection of non-palpable breast cancers and tumors. However, due to some limitations of this method such as low sensitivity especially in dense breasts, other method...
متن کاملBreast cancer imaging: a new role of Tc-99m sestamibi prone scintimammography for diagnosisof breast cancer
Mammography remians the procedure of choice in screening asymptomatic women for breast cancer. However, in patients with symptoms, other types of imaging play an important role in the detection of malignancies. The high cost and lack of availability of PET and MRI largely precludes the use in this patient population. TI-201 is nbt the imaging agent of choice because of its wash-out and redistri...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کامل